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Motivation

Sometimes you have peripherals but no 
software:
– Different OS
– Proprietary
– Obsolete

Sometimes you can’t assume hardware 
is correct:
– Testing and Verification
– Hardware trojans

Sometimes you want to adapt to 
unknown environments
– Evolutionary robotics
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Goal

Can computers learn to interact with unknown peripheral devices?
– Devices act on sequences of commands that change internal state to 

produce a sequence of outputs
– Traditional black-box techniques are impractical for complex systems[1]
– Recurrent Neural Networks can approximate arbitrary complex systems[2]

● But can they learn such models?

Hypothesis:
– We can train recurrent networks to create functionally accurate 

models of computer peripheral devices
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Empirical Study Overview

Process
– Fuzz the input space with random 

input sequences to the hardware
– Observe output
– Train RNN with observations
– Repeat

Caveats
– Not possible to learn every device 

through passive observation
● NP-Complete in the general case[3]

RNN image: htp://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
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Emulated Test Devices

6 Example Devices
– 5 simple examples

● All have memory
● XOR
● Parity Calculator

– A 16550 UART
– Binary (bit) inputs (0,1)
– Increasing complexity

● UART is a deceptively 
complex device to learn
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RNN Structure

Not concerned with most 
optimal method
– Only that it learns

Keras + Tensorflow
Sequence learning
– GRU or LSTM cells
– Multiple Layers

● Hidden size: max(I,O)+1

– Activation between each layer

Empirically determined
– Random sampling of 

hyperparameter space 

Same structure used 
for each machine type!
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Result 1: Successful Learning

Training dataset
– 4096 training sequences
– 1024 validation sequences
– 128 evaluation sequences
– Sequences of 1024 commands 

Repeat for 50 networks
– Stop at 4096 epochs or when 

validation loss < 0.1% for 20 
consecutive epochs. 

– Success if < 5% loss on evaluation 
data
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Result 1 (cont)

Val Loss / Epoch: EightBitMachine Val Loss / Epoch: ParityMachine
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Result 2: Functional Equivalence

Different than validation loss
– Output vector decoded into 

corresponding real values (one-hot 
decoding, rounding, etc)

Every output at every sequence 
step must decode correctly
Results:
– Even simple machines required more 

epochs to achieve perfect accuracy 
at each step

– Parity remains difficult
– SerialPort failed to achieve 100% 

accuracy despite validation error 
approaching 10-5
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Deep Dive: 16550 UART

Deceptively Complex
– 12 internal registers mapped to 8 

addresses
● Must set bits in one register to change 

mapping

– Hidden math formula
● 115200 / 16-bit value spread over two 

hidden registers(!)

– Output vector of 22 values
● Mix of one-hot, binary, and float outputs

– Data only output when certain 
command triggered

Not perfectly accurate despite low 
global validation loss



Clemens, Learning Devices Models with RNNs, IJCNN 2018 11

Deep Dive (cont)

Where is the error coming 
from?
– Heatmap

Insights
– Global error is not sufficient 

to drive optimization
– Floating point encoding for 

baud rate should be revisited

Loss at Epoch 16
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Deep Dive (cont)

Loss at Epoch 176

Where is the error coming from?
– Heatmap

Insights
– Global error is not sufficient to 

drive optimization
– Floating point encoding for baud 

rate should be revisited
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Deep Dive (cont)

Loss at Epoch 2640

Where is the error coming from?
– Heatmap

Insights
– Global error is not sufficient to 

drive optimization
– Floating point encoding for baud 

rate should be revisited
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Results Summary

Learning observed in all test machines
Same general network architecture 
Most achieve 100% accuracy
– Parity is the most difficult to learn

UART model achieves low error
– ...but not complete accuracy
– Better results achieved after paper published 

● Baudrate remains an issue 
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Next Steps

Refine technique
– Revisit activation functions
– Interrupts / DMA

Expand dataset
– VGA Text Mode

Rule Extraction
– Replaced “black box” device with 

“opaque box” trained RNN
– Automatically generate commands 

for original device based on 
knowledge extracted from learned 
model  
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Key Takeaways

RNNs can be used to accurately model computer peripherals!
– Novel application
– Dataset / code available

Successful learning of complex systems using existing tools
– All systems learned some aspects of the underlying machine
– Many learned perfectly accurate representations

Same basic RNN architecture works for all tested systems
– No domain specific knowledge imparted in network structure
– Must be careful not to impart knowledge in the encoding 

Potential new avenue for black-box learning of unknown systems
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Questions?

John Clemens
clemej1@umbc.edu
http://www.deater.net/john/
http://coral-lab.umbc.edu/
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Result 3: Decomposed UART

Try separate networks for 
each output class
– Attempt to focus error reduction 

on each output independently
– Not ideal solution
– Still requires full-size network

Results:
– Slight improvement
– Needs more study



Clemens, Learning Devices Models with RNNs, IJCNN 2018 20

I/O Encodings

Bit-machine encoding:

UART encoding:
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State Space Sizes
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Discussion

Same general network structure works well in many 
cases
– No domain specific knowledge imparted in network structure
– Must be careful not to impart knowledge in the encoding 

Feature Encoding (input/output) is important
– Network needs “expressibility” to learn input/output encoding 

as well as device model 
– Keep it simple, so more of network dedicated to model
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