

Learning Device Models with Recurrent Neural Networks

John Clemens University Of Maryland, Baltimore County (UMBC)

Motivation

Sometimes you have peripherals but no software:

- Different OS
- Proprietary
- Obsolete

Sometimes you can't assume hardware is correct:

- Testing and Verification
- Hardware trojans

Sometimes you want to adapt to unknown environments

- Evolutionary robotics

Can computers learn to interact with unknown peripheral devices?

- Devices act on sequences of commands that change internal state to produce a sequence of outputs
- Traditional black-box techniques are impractical for complex systems[1]
- Recurrent Neural Networks can approximate arbitrary complex systems[2]
 - But can they *learn* such models?

Hypothesis:

- We can train recurrent networks to create functionally accurate models of computer peripheral devices

Empirical Study Overview

Process

- Fuzz the input space with random input sequences to the hardware
- Observe output
- Train RNN with observations
- Repeat

Caveats

- Not possible to learn every device through passive observation
 - NP-Complete in the general case[3]

RNN image: http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

Emulated Test Devices

UMBC AN HONORS UNIVERSITY IN MARYLAND

6 Example Devices

- 5 simple examples
 - All have memory
 - XOR
 - Parity Calculator
- A 16550 UART
- Binary (bit) inputs (0,1)
- Increasing complexity
 - UART is a deceptively complex device to learn

Clemens, Learning Devices Models with RNNs, IJCNN 2018

RNN Structure

Not concerned with most optimal method

- Only that it learns

Keras + Tensorflow

Sequence learning

- GRU or LSTM cells
- Multiple Layers
 - Hidden size: max(I,O)+1
- Activation between each layer

Empirically determined

 Random sampling of hyperparameter space

Same structure used for each machine type!

KERAS HYPER-PARAMETERS USED FOR EXPERIMENTS

Clemens, Learning Devices Models with RNNs, IJCNN 2018

Result 1: Successful Learning

Training dataset

- 4096 training sequences
- 1024 validation sequences
- 128 evaluation sequences
- Sequences of 1024 commands

Repeat for 50 networks

- Stop at 4096 epochs or when validation loss < 0.1% for 20 consecutive epochs.
- Success if < 5% loss on evaluation data

Machine	# Params	Epochs	% Success	Eval Loss				
EightBitMachine	2,461	231	98%	0.002515				
SingleDirectMachine	2,461	206	98%	0.003003				
SingleInvertMachine	2,461	37	100%	0.000018				
SimpleXORMachine	2,384	155	98%	0.002466				
ParityMachine	2,384	1875	78%	0.023999				
SerialPortMachine	10,398	773	98%	0.003326				
TABLE II								
	= -							

RESULTS OF TRAINING 50 NETWORKS FOR EACH MACHINE

Result 1 (cont)

Val Loss / Epoch: EightBitMachine

Val Loss / Epoch: ParityMachine

Clemens, Learning Devices Models with RNNs, IJCNN 2018

Result 2: Functional Equivalence

Different than validation loss

- Output vector decoded into corresponding real values (one-hot decoding, rounding, etc)
- Every output at every sequence step must decode correctly

Results:

- Even simple machines required more epochs to achieve perfect accuracy at each step
- Parity remains difficult
- SerialPort failed to achieve 100% accuracy despite validation error approaching 10-5

Machine	# Outputs	Epochs	Epochs+	Accuracy
EightBitMachine	1048576	210	57	100%
SingleDirectMachine	1048576	28	0	100%
SingleInvertMachine	1048576	69	40	100%
ParityMachine	131072	4026	1939	99.9992%
SimpleXORMachine	131072	83	21	100%
SerialPortMachine	2883584	N/A	33000+	N/A

TABLE III

MAXIMUM EVALUATION ACCURACY WITH OUTPUT MAPPING.

Deep Dive: 16550 UART

Deceptively Complex

- 12 internal registers mapped to 8 addresses
 - Must set bits in one register to change mapping
- Hidden math formula
 - 115200 / 16-bit value spread over two hidden registers(!)
- Output vector of 22 values
 - Mix of one-hot, binary, and float outputs
- Data only output when certain command triggered

Not perfectly accurate despite low global validation loss

Setting	Values	Description
Word Length	5,6,7,8 bits	Size of the data to send
Baud Rate	Value between 0-115200	Base wire clock rate
Stop Bits	1, 1.5, 2 bits	End-of-frame bits
Parity	None,Odd,Even,High,Low	Meaning of parity bits
TX Data	Value 0-255	Data to transmit

TABLE I

Relevant RS-232 settings with descriptions

Target	Baudrate	Wordlen	Parity	Sbits	Output		
115200,8n1	115285	8	None	1	Haxxo Wofxp!		
9600,7e1	1936	7	Even	1	Haxxo Wofxp!		
2400,702	853	7	Odd	2	Haxxo Wofxp!		
TABLE IV							

EXAMPLE "HELLO WORLD!" OUTPUT AFTER 33,000+ EPOCHS, SINGLE NETWORK

Where is the error coming from?

- Heatmap

Insights

- Global error is not sufficient to drive optimization
- Floating point encoding for baud rate should be revisited

Loss at Epoch 16

Where is the error coming from?

- Heatmap

Insights

- Global error is not sufficient to drive optimization
- Floating point encoding for baud rate should be revisited

Loss at Epoch 176

Where is the error coming from?

- Heatmap

Insights

- Global error is not sufficient to drive optimization
- Floating point encoding for baud rate should be revisited

Loss at Epoch 2640

Learning observed in all test machines

Same general network architecture

Most achieve 100% accuracy

- Parity is the most difficult to learn

UART model achieves low error

- ...but not complete accuracy
- Better results achieved after paper published
 - Baudrate remains an issue

Next Steps

Refine technique

- Revisit activation functions
- Interrupts / DMA
- Expand dataset
- VGA Text Mode

Rule Extraction

- Replaced "black box" device with "opaque box" trained RNN
- Automatically generate commands for original device based on knowledge extracted from learned model

RNNs can be used to accurately model computer peripherals!

- Novel application
- Dataset / code available
- Successful learning of complex systems using existing tools
- All systems learned some aspects of the underlying machine
- Many learned perfectly accurate representations
- Same basic RNN architecture works for all tested systems
- No domain specific knowledge imparted in network structure
- Must be careful not to impart knowledge in the encoding

Potential new avenue for black-box learning of unknown systems

Questions?

John Clemens clemej1@umbc.edu http://www.deater.net/john/ http://coral-lab.umbc.edu/ [1] F. Vaandrager, "Model learning," Communications of the ACM, vol. 60, no. 2, pp. 86–95, 2017.

[2] H. T. Siegelmann and E. D. Sontag, "Turing computability with neural nets," vol. 4, no. 6, pp. 77–80, 00299.

[3] E. M. Gold, "Complexity of automaton identification from givendata," vol. 37, no. 3, pp. 302–320.

Non-custom image credits: Wikipedia, unless otherwise stated.

Backup Slides

Clemens, Learning Devices Models with RNNs, IJCNN 2018

Result 3: Decomposed UART

Try separate networks for each output class

- Attempt to focus error reduction on each output independently
- Not ideal solution
- Still requires full-size network

Results:

- Slight improvement
- Needs more study

Output	Encoding	Output Size	Epochs	Val. Loss
Parity	one-hot	5	579	$5.4 * 10^{-6}$
Word Length	one-hot	4	340	$1.2 * 10^{-5}$
Stop Bits	one-hot	3	251	$2.7 * 10^{-5}$
Baud Rate	float	1	1260	$1.2 * 10^{-4}$
Tx	true/false	1	322	$2.3 * 10^{-5}$
Data	binary	8	628	$1.1 * 10^{-5}$

TABLE V CHARACTERISTICS OF DECOMPOSED MODEL NETWORKS FOR UART

Target	Baudrate	Wordlen	Parity	Sbits	Output		
115200,8n1	115199	8	None	1	H!llo wop,d!		
9600,7e1	2210	7	Even	1	Hello w/rld!		
2400,7o2	146	7	Odd	2	Hello w/rld!		
TABLE VI							

EXAMPLE "HELLO WORLD!" OUTPUT, MULTIPLE NETWORKS

I/O Encodings

	Command Sequence	Input Encoding	Output Encoding
Bit-machine encoding:	cmd bit 1. (set, 7) 2. (clear, 4) 3. (set, 0) 4. (set, 7) 5. (set, 5) 1022. (clear, 5) 1023. (set, 3) 1024. (clear, 0)	cmd bit [1, 0, 0, 0, 0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 1, 0, 0, 0] [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 1, 0, 0] [1, 0, 0, 0, 0, 0, 1, 0, 0] [1, 0, 0, 0, 0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]	bit [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1] [1, 0, 0, 0, 0, 0, 0, 0, 1] [1, 0, 0, 0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 1, 0, 1] [1, 1, 0, 1, 1, 0, 0, 1] [0, 1, 0, 1, 1, 0, 0, 1]

UART encoding:

Comm	and Sequence	Input	Encoding	l	Output Encod	ing				
	cmd, reg, data	cmd	reg	data	parity	wordlen	stopbits	baud	tx	data
1.	(write , 3, 0x25)	[1,	0, 1, 1,	0, 0, 1, 0, 0, 1, 0, 1]	[1,0,0,0,0,	0, 1, 0, 0,	0,0,1,	1,	0,	0, 0, 0, 0, 0, 0, 0, 0]
2.	(read , 0, 0x66)	[0,	0, 0, 0,	0, 1, 1, 0, 0, 1, 1, 0]	[1,0,0,0,0,	0, 1, 0, 0,	0,0,1,	1,	0,	0, 0, 0, 0, 0, 0, 0, 0]
3.	(write , 0, 0x45)	[1,	0, 0, 0,	0, 1, 0, 0, 0, 1, 0, 1]	[1,0,0,0,0,	0,1,0,0,	0,0,1,	1,	1,	0, 1, 0, 0, 0, 1, 0, 1]
4.	(write , 3, 0x8F)	[1,	0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0]	[0,1,0,0,0,	0,0,0,1,	0,0,1,	1,	0,	0, 0, 0, 0, 0, 0, 0, 0]
5.	(write , 1, 0x33)	[1,	0, 0, 0,	0, 0, 1, 0, 0, 0, 0, 0]	[0,1,0,0,0,	0,0,0,1,	0,0,1,	0.185,	0,	0, 0, 0, 0, 0, 0, 0, 0, 0]
1022	.(read ,7,0x9a)	[0,	1, 1, 1,	1, 0, 0, 1, 1, 0, 1, 0]	[0,0,1,0,0,	0,0,1,0,	1,0,0,	0.083,	0,	0, 0, 0, 0, 0, 0, 0, 0, 0]
1023	. (write , 0, 0x81)	[1,	1, 1, 1,	1, 0, 0, 0, 0, 0, 0, 1]	[0,0,1,0,0,	0,0,1,0,	1,0,0,	0.083,	1,	1, 0, 0, 0, 0, 0, 0, 1]
1024	. (write , 1. 0x02)	[1,	1, 1, 1,	1, 0, 0, 0, 0, 0, 0, 1]	[0,0,1,0,0,	0,0,1,0,	1,0,0,	0.083,	0,	0, 0, 0, 0, 0, 0, 0, 0, 0]

Clemens, Learning Devices Models with RNNs, IJCNN 2018

State Space Sizes

Machine	Input	Output	Internal			
EightBitMachine	2^{9}	2^{8}	2^{8}			
SingleInvertMachine	2^9	2^{1}	2^{1}			
SimpleXORMachine	$\begin{vmatrix} 2^9 \\ 2^9 \end{vmatrix}$	2^{1}	2^{2}			
SerialPortMachine	2^{12}	2^{37}	2^{37}			
TABLE VII						

APPROXIMATE MAGNITUDE OF STATE SPACES FOR EACH MACHINE.

Same general network structure works well in many cases

- No domain specific knowledge imparted in network structure
- Must be careful not to impart knowledge in the encoding
- Feature Encoding (input/output) is important
- Network needs "expressibility" to learn input/output encoding as well as device model
- Keep it simple, so more of network dedicated to model