
Game Demakes for the Apple II ∗

Vince ‘deater‘ Weaver
University of Maine
vince@deater.net

March 2020

Modern video games have amazing graphics and
sound — but have you ever wondered if the same
gameplay would have been possible on the 8-bit
systems available years ago? The reimplementa-
tion of recent games for retro-systems is common
enough that there is a term for it: a “demake”. It
can be a fun challenge to take a game and make it
playable within the hardware constraints of vin-
tage hardware. Demakes are available for a wide
variety of games and platforms, targeting pretty
much every imaginable 8- and 16-bit system.

I happen to have written a few demakes myself.

Kerbal Space Program

One of my favorite games is Kerbal Space Pro-
gram, originally released for Mac, Windows, and
Linux in 2015. In this game you use modular
parts to construct rockets that launch little green
people known as Kerbals into space to explore
their solar system. The Kerbals are brave in the
face of danger, as the launches tend to go poorly
and a lot of time is spent launching rescue mis-
sions to save those stranded by previous missions.

Calculating the proper fuel load for rockets in-
volves a lot of math, and at some point I got
curious if the Apple II could handle it. I started
coding in BASIC, which is a surprisingly efficient

∗This originally appeared in the March 2020 edition of
Juiced.GS magazine with the title: “Behind the Scenes:
deater’s demakes: Doing More with Less, Through a por-
tal into the mist of another world”

language for rapid prototyping of fully playable
games. The math for spaceflight is relatively
straightforward in two dimensions and the float-
ing point support in Applesoft BASIC is suffi-
cient (though a bit slow) to implement a fun
version of the game. Many features of the real
game are included: the opening splash screen
and theme music, a simplified interface for build-
ing modular spaceships, and the ability to launch
into orbit with a framerate of a few frames per
second.

My graphics were drawn in GIMP for Linux, con-
verted to HGR format, and BLOADed into mem-
ory. The rockets were drawn using shape tables.
The code was written with a plain text editor and
built using a custom BASIC tokenizer. This was
then put on a disk image for testing on an emu-
lator before running on real hardware. The code
found a bug in my tokenizer due to an interest-
ing corner case in Applesoft, where the AT and
ATN tokens need to be carefully handled during
parsing as they start with the same letters.

Portal

My next demake was of the game Portal (released
by Valve in 2007 — not to be confused with a
completely different game of the same name re-
leased by Activision for the Apple II in 1987).
I thoroughly enjoyed playing Portal, despite not
encountering it until long after its initial release
and it being a short game. You are a test sub-

1



Figure 1: All systems go: Kerbal Space Program launches on the Apple II.

ject being run through a series of escape rooms
by a mysterious AI named GLaDOS. Escaping
the rooms involves puzzle-solving using a portal
gun, which allows you to shoot portal openings
on flat surfaces of the room that enable instant
transport from one spot to another.

My Applesoft BASIC demake was inspired by the
blue and orange colors prominently featured in
the game closely matching colors found in the
Apple II hi-res palette.

Creating a platform game in Apple II hi-res
graphics is a pain; unlike with other 8-bit sys-
tems, the Apple II has no hardware sprites. This
limitation can be somewhat worked around by
using shape-tables. However, colored shapes are
tricky: you have to be careful about drawing on
odd or even columns, or choosing which of the
two black background colors are used, lest your
shapes end up with the wrong colors.

The demake is fully playable, with a full physics
engine (although only in two dimensions). You
can go through portals, jump over obstacles,
avoid being detected by sentry robots, and un-
dertake the final battle. Only the first and last
level are implemented, but if you beat the game
the famous ending with the song “Still Alive” is
played with ASCII art and lyrics.

That song delayed the game longer than you’d
imagine. I had never been quite satisfied by the

sound quality available through the speaker from
Applesoft, and I got side-tracked on a multi-year
side-quest to make the music sound better. I
eventually developed a much more advanced ver-
sion of the ending song capable of playing in ei-
ther Paul Lutus’ two-channel Electric Duet (for
the speaker) or else as 3-channel AY-3-8910 au-
dio (for the Mockingboard).

Despite this demake’s limited scope compared
to the full game, it briefly made me Internet-
famous, with interviews for news articles and
playthroughs appearing on YouTube.

Many people who liked the Portal demake re-
quested a faster, more complete version. I re-
sisted this call, as it would require moving to
6502 assembly language which is orders of mag-
nitude more complex than the quick development
possible with Applesoft. In addition, a full, more
complete game would quickly run into disk and
RAM size constraints. Even these BASIC de-
makes were large enough to require special han-
dling to load the code high in memory to avoid
overlapping with the hi-res graphics locations.

2



Figure 2: Welcome to Aperture Science: The antagonist of Portal is glad to see you.

Figure 3: This is a triumph: GLaDOS remains as snarky as ever, even when degraded to 8-bit.

3



Out of This World /
Another World

And yet I did end up eventually creating an
assembly language demake. As with many
projects, it started as a small proof of concept
that rapidly spiralled out of control.

The game is Éric Chahi’s 1991 classic “Another
World” (released as “Out of this World” in the
USA). In the game, you are a scientist who gets
accidentally transported to an alien world. You
have to survive on the strange new planet with
a fancy laser pistol and the help of a friend you
make along the way.

I started working on this after seeing Paul
Nicholas’s Pico-8 take on the game. (The Pico-8
is a modern fantasy console designed with simi-
lar limitations to vintage 8-bit machines). I won-
dered if I could make a version of the game that
would run on the Apple II. You might already
be thinking: wasn’t this game released for the
Apple IIGS? Yes, due to some amazing coding
by “Burger” Becky Heineman, there was a con-
temporary release for that system. However, in
my projects, I like to target the original Apple II
from 1977, preferably fitting on on a 140k floppy
and in 48k of RAM.

I decided to code the game in the oft-overlooked
lo-res graphics mode, which has a resolution of
40x48 with 15 colors. This maps surprisingly well
to Another World’s 320x200 with 16 colors. The
lo-res graphics mode has the advantage of not
taking much RAM (1K for the display, as op-
posed to 8K for hi-res). This allows faster screen
updates, smaller sprites and background images,
and room for multiple off-screen pages to con-
struct each frame before copying to the screen.

The original game was for the Commodore
Amiga, handwritten in m68k assembly. The
code was written in a custom interpreted lan-
guage that drew single-colored “polygons” to the
screen. Contemporary ports of the game re-
implement that interpreter, but that probably is

not possible on the original Apple II, so software
sprites are used instead.

The demake graphics are hand-drawn based on
screen captures gathered from the Windows 3.1
release of the original game. To fit in RAM
and on disk the graphics are compressed with a
simple run-length-encoded algorithm. The game
tends to be dark, so the animations and sprites
often include the color black. This can be a
problem as traditionally black is used for trans-
parency. The demake takes advantage of the fact
that Apple II lo-res has two interchangeable grey
colors and the second one is used for the trans-
parent color.

There’s a famous scene in the game where an
alien talks to you (although no one can agree on
what is said— one approximation is “My Tuba”).
This is included in the demake at the expense
of 10k of RAM holding the sound samples for
the Apple II speaker. A few scenes in the game
have music; when possible I have converted the
original Amiga MOD music to PT3 AY-3-8910
music that can be played on a Mockingboard.
This involved the creation of a PT3 music library
(pt3lib) that has since been made available for
other projects wanting to create music for games
on the Apple II.

This demake is still under development. Cur-
rently the game is playable, with five levels (out
of sixteen) fully fleshed out. In addition, the
elaborate opening movie is fully implemented, as
is the full end movie and credits.

Myst

My most recent demake is of the game Myst,
designed by Cyan Inc. and released in 1993.

In this game, players solve puzzles while explor-
ing a series of mysterious worlds by traveling
through magical linking books. Myst was not
only the best-selling computer game of the last
millennium; it was also a large game, one of the

4



Figure 4: Out of This World: Éric Chahi’s 1991 game was also ported to the more-capable Apple
IIGS by Becky Heineman.

first to require a CD-ROM. In addition to impres-
sive pre-rendered 3D graphics, it has atmospheric
sound effects and plenty of full-motion video.

My goal is to see how much gameplay I can fit on
a 48k Apple II+ with a single 140k floppy disk.
This involves optimizing the size of the original
game by many orders of magnitude. Fortunately,
Myst’s gameplay and thus the demake’s code, is
relatively simple: aside from the puzzles, Myst
is similar to walking through a slideshow. In
fact, it was originally written as a HyperCard
stack! That leaves the slideshow’s images taking
up most of the storage. I am again using lo-res
graphics, which I create by tracing over screen-
shots from the actual game. When compressed
with the LZSA algorithm each screen averages
about 512 bytes in size, which allows fitting hun-
dreds of images on disk.

Some people, surprised that I hand-drew each
image, have suggested automating the process
using software. I find the low-resolution and 15-
color palette makes that difficult. Myst is a dark
game with lots of misty shades of grey and brown,
and these do not map well to the Apple II col-
ors. To make the game at least somewhat under-
standable at such low resolution involves a lot of
manual colors and shape selection.

I have also received suggestions that I should

be using hi-res, double hi-res, or even super hi-
res graphics modes. These modes would allow
the graphics to be more faithful to the original,
but at a dramatically increased file size. Auto-
matic conversion of images to a compressed hi-res
graphics format are around 4kB in size each—
eight times larger than their lo-res equivalents.
This means instead of taking one floppy disk,
the game would take eight. These larger filesizes
might not be a big deal in these modern days
of SD or USB storage used by devices like the
CFFA3000, but I prefer to try to keep things to
a single floppy.

The demake does support playing sound, even
though the Apple II speaker is not know for its
sound quality. My sound files are in the BTc
format, a one-bit encoding designed by Roman
Black for high compression levels. I use code by
Oliver Schmidt that can play these files through
the Apple II speaker. One iconic sound from
Myst is the three-second-long noise made when
traveling through a book. This 32kHz 8-bit WAV
files takes 96K, which is far too big. Compressed
with BTc, this file becomes 12K— although still
relatively large for a machine with 48K RAM, it
is nonetheless a workable size.

Development of Myst’s demake is ongoing, with
the plan to implement the full, main island, puz-
zles and all. Myst has four additional worlds to

5



Figure 5: Play Misty for Me: Myst, released for the Mac in 1993, eventually sold six million
copies. Within this rocket is a keyboard that must be played in the proper sequence.

visit, and it is unclear how much of that con-
tent will fit. But, much like the magical books in
Myst, I may find there’s more inside than I bar-
gained for. [note from the future— eventually
the full game was finished, including all puzzles,
all endings, and the intro narration. This did
end up requiring expansion to fit on three floppy
disks]

Development and Source Code

I develop these games using various tools I have
written for Linux. I cross-build the programs,
add them to DOS 3.3 disk images, and then test
using the AppleWin emulator running under the
Wine compatibility layer. For 6502 code I use the
ca65 assembler that comes with the cc65 com-
piler project.

Since the original release of this article in March
2020 many more demakes for the Apple II and
Atari 2600 have been completed. All of the pro-
grams and tools described in this article, includ-
ing full source code and disk images, can be found
on the author’s website: http://www.deater.

net/weave/vmwprod/demakes/

About the Author

Vince Weaver has been programming games of
varying quality for the Apple II since the mid-
1980s. When he’s not writing 6502 assembly lan-
guage he works as an Associate Professor of Com-
puter Engineering at the University of Maine.

6

http://www.deater.net/weave/vmwprod/demakes/
http://www.deater.net/weave/vmwprod/demakes/

