
A version of this document appeared in PoC || GTFO 0x18

Making an 8k Low-resolution Graphics Demo for the Apple II

by DEATER, AKA Vincent M. Weaver

1 Why would anyone do this?

While making an inside-joke filled game for my retro
system of choice, the Apple II, I needed to create a
Final-Fantasy-esque flying-over-the-planet sequence.
I was originally going to fake this, but why fake
graphics when you can laboriously spend weeks im-
plementing the effect for real? It turns out the Ap-
ple II is just barely capable of generating the effect
in real time.

Once I got the code working I realized it would be
great as part of a graphical demo, so off on that tan-
gent I went. This turned out well, despite the fact
that all I knew about the demoscene I had learned
from a few viewings of the Future Crew Second Re-
ality demo combined with dimly remembered Com-
modore 64 and Amiga usenet flamewars.

While I hope you enjoy the description of the demo
and the work that went into it, I suspect this whole
enterprise is primarily of note due to the dearth of
demos for the Apple II platform. If you are truly in-
terested in seeing impressive Apple II demos, I would
like to make a shout out to FrenchTouch whose works
put this one to shame.

2 The Hardware

The Apple II was introduced in 1977. In theory this
demo will run on hardware that old, although I do
not have access to a system of that vintage. I like
to troll Commodore fans by noting this predates the
Commodore 64 by five years.

CPU, RAM and Storage:

The Apple II has a 6502 processor running at
roughly 1.023MHz. Early models only shipped with
4k of RAM, but later 48k, 64k, and 128k systems

were common. While the demo itself fits in 8k, it
decompresses to a larger size and uses a full 48k of
RAM; this would have been very expensive in 1977.
See Figure 7 for a diagram of the memory map.

Also in 1977 you would probably be loading this
from cassette tape. It would be another year before
Woz’s single-sided 5 1

4” Disk II came about (eventu-
ally offering 140k of storage per side with the release
of Apple DOS3.3 in 1980).

Sound:
The only sound available in a stock Apple II is a

bit-banged speaker. There was no timer interrupt;
if you wanted music you had to cycle-count via the
CPU to get the waveforms you needed.

The demo uses a Mockingboard soundcard which
was introduced in 1981. This board contains dual
AY-3-8910 sound generation chips connected via 6522
I/O chips. Each sound chip provides 3 channels of
square waves as well as noise and envelope effects.

Graphics:
It is hard to imagine now, but the Apple II had nice

graphics for its time. Compared to later competitors,
however, it had some limitations.

Hardware Sprites No
User-defined charset No
Blanking interrupts No

Palette selection No
Linear framebuffer No
Hardware scrolling No
Hardware page flip Yes

The hi-res graphics mode is a complex mess of
NTSC hacks by Woz. You get approximately 280x192
resolution, with 6 colors available. The colors are
NTSC artifacts with limitations on which colors can
be next to each other (in blocks of 3.5 pixels). There

4 THE DEMO

is plenty of fringing on edges, and colors change de-
pending on whether they are drawn at odd or even
locations. To add to the madness, the framebuffer is
interleaved in a complex way, and pixels are drawn
least-significant-bit first (all of this to get DRAM re-
fresh for free and to shave a few 7400 series logic chips
from the design). You do get two pages of graphics,
Page 1 is at $20001 and Page 2 at $4000. Optionally
4 lines of text can be shown at the bottom of the
screen instead of graphics.

The lo-res mode is a bit easier to use. It provides
40x48 blocks, reusing the same memory as the 40x24
text mode. (As with hi-res you can switch to a 40x40
mode with four lines of text displayed at the bottom).
Fifteen colors are available (there are two greys which
are indistinguishable). Again the addresses are inter-
leaved in a non-linear fashion. Lo-res Page 1 is at
$400 and Page 2 is at $800.

Some amazing effects can be achieved by cycle
counting, reading the floating bus, and racing the
beam while toggling graphics modes on the fly. Un-
fortunately for you this demo does not do any of those
things so you will not be reading about that today.

3 Development Setup

I do all of my coding under Linux, using the nano
text editor. I use the ca65 assembler from the cc65
project, which I find to be a reasonable tool although
many “real” Apple II programmers look down on it
for some reason. I cross-compile the code, construct-
ing Apple DOS3.3 disk images using custom tools I
have written. I test using emulators: AppleWin (run
under the wine emulator) is the easiest to use, but
until recently MESS/MAME had cleaner sound.

Once the code appears to work, I put it on a
USB stick and transfer to actual hardware using a
CFFA3000 disk emulator installed in the actual Ap-
ple II (an Apple IIe platinum edition).

1On 6502 systems hexadecimal values are traditionally in-
dicated by a dollar sign

Figure 1: VMW logo hidden in the executable data.

Figure 2: The title screen.

4 The Demo

4.1 BOOTLOADER

An Applesoft BASIC “HELLO” program loads the
binary automatically at bootup. This does not count
towards the executable size, as you could manu-
ally BRUN the 8k machine-language program if you
wanted.

To make the loading time slightly more interest-
ing the HELLO program enables graphics mode and
loads the program to address $2000 (hi-res page1).
This causes the display to filled with the colorful pat-
tern corresponding to the compressed image. This
conveniently fills all 8k of the display RAM, or would
have if we had POKEd the right soft-switch to turn
off the bottom 4 lines of text.

2

4.2 DECOMPRESSION 4 THE DEMO

Figure 3: Bouncing ball on infinite checkerboard.

Upon loading, execution starts at address $2000.

4.2 DECOMPRESSION

The binary is encoded with the LZ4 algorithm. We
flip to hi-res Page 2 and decompress to this region so
the display now shows the executable code.

The 6502 size-optimized LZ4 decompression code
was written by qkumba (Peter Ferrie). The pro-
gram and data decompress to around 22k starting at
$4000. This over-writes parts of DOS3.3, but since
we are done with the disk this is not an issue.

If you look carefully at the upper left corner of the
screen during decompress you will see my triangular
logo, which is supposed to evoke my VMW initials
(see Figure 1). To do this I had to put the proper bit
pattern inside the code at the interleaved addresses
of $4000, $4400, $4800, and $4C00. The image data
at $4000 maps to (mostly) harmless code so it is left
in place and executed. Making this work turned out
to be more trouble than it was worth, especially as
the logo is not visible in the youtube capture of the
demo (the video compression does not handle screens
full of seemingly random noise well).

The demo was optimized to fit in 8k. Optimiz-
ing code inside of a compressed image is much more
complicated than regular size optimization. Remov-
ing instructions sometimes makes the binary larger as

Figure 4: Spaceship flying over an island.

it no longer compresses as well. Long runs of values
(such as 0 padding) are essentially free. This mostly
turned into an exercise of guess-and-check until ev-
erything fit.

4.3 TITLE SCREEN

Once decompression is done, execution continues at
address $4000. We switch to low-res mode for the
rest of the demo.
FADE EFFECT: The title screen fades in from
black. This is a software hack as the Apple II does
not have palette support. The image is loaded to an
off-screen buffer and a lookup table is used to copy
in the faded versions on the fly.
TITLE GRAPHICS: The title screen is shown in
Figure 2. The image is run-length encoded (RLE)
which is probably unnecessary in light of it being fur-
ther LZ4 encoded. (The LZ4 compression was a late
addition to this endeavor).

Why not save some space and just load our demo at
$400 and negate the need to copy the image in place?
Remember the graphics are 40x48 (shared with the
text display region). It might be easier to think of
it as 40x24 characters, with the top / bottom 4-bits
of each ASCII character being interpreted as colors
for a half-height block. If you do the math you will
find this takes 960 bytes of space, but the memory

3

4.4 MOCKINGBOARD MUSIC 4 THE DEMO

Figure 5: Spaceship with starfield.

map reserves 1k for this mode. There are “holes” in
the address range that are not displayed, and various
pieces of hardware can use these as scratchpad mem-
ory. This means just overwriting the whole 1k with
data might not work out well unless you know what
you are doing. To this end our RLE decompression
code skips the holes just to be safe.

SCROLL TEXT: The title screen has scrolling text
at the bottom. This is nothing fancy, the text is in a
buffer off screen and a 40x4 chunk of RAM is copied
in every so many cycles. You might notice that there
is tearing/jitter in the scrolling even though we are
double-buffering the graphics. Sadly there is not a
reliable cross-platform way to get the VBLANK info
on Apple II machines, especially the older models.
This is even more noticeable in the recorded video,
as the capture card and video encoding conspire to
make this look worse than things look in person.

4.4 MOCKINGBOARD MUSIC

No demo is complete without some exciting back-
ground music. I like chiptune music, especially the
kind written for AY-3-8910 based systems. During
the long time waiting for my Mockingboard hardware
to arrive I designed and built a Raspberry Pi chip-
tune player that uses essentially the same hardware.
This allowed me to build up some expertise with the

Figure 6: Rasterbars, stars, and credits. Stealth
Susie was a particularly well-traveled guinea pig.

software/hardware interface in advance.

The song being played is a stripped down and re-
arranged version of “Electric Wave” from CC’00 by
EA (Ilya Abrosimov).

Most of my sound infrastructure involves YM5
files, a format commonly used by ZX Spectrum and
Atari ST users. The YM file format is just AY-3-8910
register dumps taken at 50Hz. To play these back one
sets up the sound card to interrupt 50 times a second
and then writes out the 14 register values from each
frame in an interrupt handler.

Writing out the registers quickly enough is a chal-
lenge on the Apple II. For each register you have to
do a handshake then set both the register number
and the value. It is hard to do this in less than forty
1MHz cycles for each register. With complex chip-
tune files (especially those written on an ST with
much faster hardware) it is sometimes not possible
to get exact playback due to the delay. Further slow-
down happens as you want to write both AY chips
(the output is stereo, with one AY on the left and one
on the right). To help with latency on playback we
keep track of the last frame written and only write
to the registers that have changed.

Our code detects the Mockingboard at startup; we
are lazy and only support finding the card in Slot 4
(which is a fairly typically location). The board is ini-

4

4.5 MODE7 BACKGROUND 4 THE DEMO

tialized, and then one of the 6522 timers is set to in-
terrupt at 25Hz. Why 25Hz and not 50Hz? At 50Hz
with 14 registers you use 700 bytes/s. So a 2 minute
song would take 84k of RAM, which is much more
than is available. Also the Disk II requires hard real-
time response involving the full CPU to read from
disk, so it is not possible to read more data while the
demo is running. To allow the song to fit in memory
(without the fancy circular buffer decompression rou-
tine utilized in my VMW Chiptune music-disk demo)
we have to reduce the size. First the music is changed
so it only needs to be updated at 25Hz. Then the
register data is compressed from 14 bytes to 11 bytes
by stripping off the envelope effects and packing to-
gether fields that have unused bits. In the end the
sound quality suffered a bit, but we were able to fit an
acceptably catchy chiptune inside of our 8k payload.

4.5 MODE7 BACKGROUND

“Mode7” is a Super Nintendo (SNES) graphics mode
that takes a tiled background and transforms it by ro-
tating and scaling. The most common effect squashes
the background out to the horizon, giving a three-
dimensional look. The SNES did these transforms in
hardware, but our demo must do them in software.

Our algorithm is based on code by Martijn van
Iersel. It iterates through each horizontal line on the
screen and calculates the color to output based on
the camera height (spacez) and angle as well as the
current x and y coordinates (cx and cy).

First the distance d is calculated based on fixed
scale and distance-to-horizon factors. Instead of a
costly division we use a pre-generated lookup table
for this.

d =
z × yscale

y + horizon

Next calculate the horizontal scale (distance between
points on this line):

h =
d

xscale

Then calculate delta x and delta y values between
each block on the line. We use a pre-computed
sine/cosine lookup table.

dx = −sin(angle)× h

dy = cos(angle)× h

The leftmost position in the tile lookup is calculated:

tilex = cx + (d ∗ cos(angle)− (width/2) ∗ dx

tiley = cy + (d ∗ sin(angle)− (width/2) ∗ dy

Then an inner loop happens that adds dx and dy as
we lookup the color from the tilemap (just a wrap-
around array lookup) for each block on the line.

color = tilelookup(tilex, tiley)

plot(x, y)

tilex+ = dx, tiley+ = dy

Optimizations: The 6502 processor cannot do float-
ing point, so all of our routines use 8.8 fixed point
math. We eliminate all use of division, and convert
as much as possible to table lookups (which involves
limiting the heights and angles a bit). We also save
some cycles by using self-modifying code, most no-
tably hard-coding the height (z) value and modifying
the code whenever this is changed. The code started
out only capable of roughly 4.9fps in 40x20 resolution
and in the end we improved this to 5.7fps in 40x40
resolution. Care was taken to optimize the innermost
loop, as every cycle saved there results in 1280 cycles
saved overall.
Fast Multiply: One of the biggest bottlenecks in
the mode7 code was the multiply. Even our optimized
algorithm calls for at least seven 16bit x 16bit = 32bit
multiplies, something that is really slow on the 6502.
A typical implementation takes around 700 cycles for
a 8.8 x 8.8 fixed point multiply.

We improved this by using the ancient quarter-
square multiply algorithm, first described for 6502
use by Stephen Judd.

This works by noting these factorizations:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

5

4.6 BALL ON CHECKERBOARD 4 THE DEMO

If you subtract these you can simplify to

a× b =
(a + b)2

4
− (a− b)2

4

For 8-bit values if you create a table of squares from
0 to 511 (all 8-bit a+b and a-b fall in this range) then
you can convert a multiply into two table lookups and
a subtraction. This does have the downside of requir-
ing 2kB of lookup tables (which can be generated at
startup) but it reduces the multiply cost to the order
of 250 cycles or so.

4.6 BALL ON CHECKERBOARD

The first Mode7 scene transpires on an infinite
checkerboard. A demo would be incomplete without
some sort of bouncing geometric solid, in this case
we have a pink sphere. The sphere is represented
by 16 sprites that were captured from a 20 year old
OpenGL game engine. Screenshots were taken then
reduced to the proper size and color limitations. The
shadows are also just sprites. Note that the Apple II
has no dedicated sprite hardware, so these are drawn
completely in software.

The clicking noise on bounce is generated by ac-
cessing the speaker port at address $C030. This gives
some sound for those viewing the demo without the
benefit of a Mockingboard.

4.7 TFV SPACESHIP FLYING

This next scene has a spaceship flying over an island.
The Mode7 graphics code is generic enough that only
one copy of the code is needed to generate both the
checkerboard and island scenes. The spaceship, water
splash, and shadows are all sprites. The path the
ship takes is pre-recorded; this is adapted from the
Talbot Fantasy 7 game engine with the keyboard code
replaced by a hard-coded script of actions to take.

4.8 STARFIELD

The spaceship now takes to the stars. This is typical
starfield code, where on each iteration the x and y
values are changed by

dx =
x

z
, dy =

y

z

In order to get a good frame rate and not clutter
the lo-res screen only 16 stars are modeled. To avoid
having to divide, the reciprocal of all possible z values
are stored in a table, and the fast-multiply routine
described previously is used.

The star positions require random number genera-
tion, but there is no easy way to quickly get random
data on the Apple II. Originally we had a 256-byte
blob of pre-generated “random” values included in
the code. This wasted space, so now instead we just
use our code at address at $5000 as if it were a block
of random numbers. This was arbitrarily chosen, and
it is not as random as it could be as seen when the
ship enters hyperspace and the lower-right quadrant
is distressingly star-free.

A simple state machine controls star speed, ship
movement, hyperspace, background color (for the
blue flash) and the eventual sequence of sprites as
the ship vanishes into the distance.

4.9 RASTERBARS/CREDITS

Once the ship has departed, it is time to run the
credits as the stars continue to fly by.

The text is written to the bottom four lines of
the screen, seemingly surrounded by graphics blocks.
Mixed graphics/text is generally not be possible on
the Apple II, although with careful cycle counting
and mode switching groups such as FrenchTouch have
achieved this effect. What we see in this demo is the
use of inverse-mode (inverted color) space characters
which appear the same as white graphics blocks.

The rasterbar effect is not really rasterbars, just
a colorful assortment of horizontal lines drawn at a
location determined with a sine lookup table. Hori-
zontal lines can take a surprising amount of time to
draw, but these were optimized using inlining and a
few other tricks.

The spinning text is done by just rapidly rotating
the output string through the ASCII table, with the
clicking effect again generated by hitting the speaker
at address $C030. The list of people to thank ended
up being the primary limitation to fitting in 8kB, as
unique text strings do not compress well. I apologize
to everyone whose moniker got compressed beyond

6

A THE LORES MEMORY MAP

------------- $ffff
| ROM/IO |
------------- $c000

| |
| Uncompressed|
| Code/Data |
| |
------------- $4000

| Compressed |
| Code |
------------- $2000

| free |
------------- $1c00

| Scroll |
| Data |
------------- $1800

| Multiply |
| Tables |
------------- $1000

| LORES pg 3 |
------------- $0c00

| LORES pg 2 |
------------- $0800

| LORES pg 1 |
------------- $0400

|free/vectors |
------------- $0200

| stack |
------------- $0100

| zero pg |
------------- $0000

Figure 7: Memory Map (not to scale)

recognition, and I am still not totally happy with the
centering of the text.

5 Obtaining the Code

More details, disk image, and full source can be found
at the website: http://www.deater.net/weave/

vmwprod/mode7_demo/

A The Lores Memory Map

A.1 Why is it so weird?

The Apple II is very much a TV-typewriter video-
terminal that happens to have a 6502 processor at-
tached to give the display something to do. (This
makes it similar to the SoC in a Raspberry Pi, which
is a large GPU with a small helper ARM processor
tacked onto the side.)

The Apple II video display is so central, that it even
affects the CPU timings. The CPU clock usually runs
at 978ns, but every 65th cycle it is extended to 1117ns
to keep the video output in sync with the colorburst.
This is why the 6502 runs at the somewhat unusual
average speed of 1.020484MHz.

Text mode and low-resolution graphics share the
same 1k region of memory from addresses $400 to
$800 for Page1. A straightforward setup would have
a linear memory map where location (0,0) would map
to address $400, location (39,0) would map to $427,
and location (0,1) would be at $428. That would
make too much sense.

For low-res, the first complication is what is rep-
resented by each memory byte. In text mode this
is the ASCII value you wish to display, or-ed with
$80 so the high bit is set. Leaving the high bit clear
does weird things like enable inverse (black-on-white)
or flashing characters. Setting address $400 to $C1

would put an ’A’ (ASCII $41) in the upper left cor-
ner of the screen. In low-res graphics mode the two
4-bit nibbles are split and interpreted as two blocks,
one above each other. In this case the the $C1 would
be a color 1 (red) block on top and a color 12 (light
green) block on the bottom. The colors are NTSC
artifact colors, formed by outputting the raw bit pat-
tern out to the screen with the color burst enabled.
You can try this out yourself from BASIC by run-
ning TEXT:HOME:POKE 1024,193 to see the text re-
sult, and GR:POKE 1024,193 to see the graphics re-
sult.

That is not too bad so far. The next complication
is packing the 40-columns of characters into video
memory. Sadly 40 is not a nice power of two, so
any packing is going to be inefficient somehow with
respect to addressing bits. The compromise is to pack

7

http://www.deater.net/weave/vmwprod/mode7_demo/
http://www.deater.net/weave/vmwprod/mode7_demo/

A.1 Why is it so weird? A THE LORES MEMORY MAP

three 40-byte columns into 128 bytes, wasting 8 bytes
(the “screen holes”).

This still might not be that weird, but then the
address interleaving comes into play. Note that row 0
starts at $480, but row 1 starts at $480 (a diff of 128),
not $428 (a diff of 40) as you might expect. Address
$428 actually corresponds to row 16.

For example, see the sample image in Table 1 and
how the address values are interleaved. This same im-
age is shown in Table 2 as it would appear if memory
was read linearly. To make things even more con-
fusing, the image is scattered even more completely
across the physical RAM chips for reasons we will
describe below.

The reason for this craziness, as with most oddities
on the Apple II, turns out to be Steve Wozniak being
especially clever. Early home computers often used
static RAM (SRAM). SRAM is easy to use, you just
hook up the CPU address and read/write lines to the
memory chips and read and write bytes as needed.

The Apple II instead uses dynamic RAM (DRAM),
where each bit is stored in a capacitor whose value
will leak away to zero unless you refresh it period-
ically. Why would you use memory that did that?
Well SRAM uses 6 transistors to store a bit, DRAM
uses only 1. So in theory you can fit 6 times the RAM
in the same space, leading to much cheaper costs and
much better density.

To avoid losing DRAM contents, you must regu-
larly refresh the capacitors. This involves reading
each memory value out faster than it leaks away.
DRAM reads are destructive, so a read operation al-
ways reads out, recharges, then writes back the orig-
inal value. Because of this you can avoid explicitly
refreshing DRAM with a dedicated circuit if you can
guarantee you perform a read of each memory row in
the required timeframe.

Many systems could not do this, so there was sep-
arate hardware to conduct the refresh. Often this
hardware would take over the memory bus and halt
the CPU while it was happening, slowing down the
whole system. This is true of the original IBM PC;
if you ever look at cycle-level optimization on the
PC you will notice the coders have to take into ac-
count pauses caused by memory refresh (the refresh
tended to be conservative so some coders chose to

live dangerously and make refresh happen less often
to increase performance).

Steve Wozniak realized that he could avoid stop-
ping the CPU for refresh. The 6502 clock has two
phases: during first phase processor is busy with in-
ternal work and the memory bus is idle. The CPU
only accesses memory in the second phase. The Ap-
ple II uses the idle phase to step through the video
memory range and updates the display. To refresh
the 16k (model 4116) DRAM chips you need to read
each 128-wide row at least once every 2ms. By care-
fully selecting the way that the CPU address lines
map to the RAS/CAS lines into the DRAM you can
have the video scanning circuitry walk through each
row of the DRAMs fast enough to conduct the re-
fresh for free. This works beautifully, but as a side
effect you end up with the Apple II’s weird inter-
leaved memory maps.

Wozniak said in a later interview that in retrospect
he could have gotten a linear video memory map at
the expense of two more chips on the circuit board.
Apparently when designing the Apple II he thought
most people would use BASIC which hid the memory
map, and did not realize the interleaving would be
such a pain for assembly coders.

This is why low-level text and lowres graphics
routines can be complex, using lookup tables and
read/shift/mask operations just to do simple plot op-
erations. Fully generic routines have to handle all the
corner cases, which is why the Mode7 demo cheats
and the sprite drawing code only works at even row
offsets (as this makes the code smaller and simpler).

While this seems needlessly complicated, the hi-res
graphics mode is even worse that the mess described
above.

8

A.1 Why is it so weird? A THE LORES MEMORY MAP

Table 1: Apple II lores display, 40x48. Note the interleaving of the row addresses. Rows 40-47 are ASCII
text being interpreted as graphic blocks.

$
0
0

$
0
1

$
0
2

$
0
3

$
0
4

$
0
5

$
0
6

$
0
7

$
0
8

$
0
9

$
0
A

$
0
B

$
0
C

$
0
D

$
0
E

$
0
F

$
1
0

$
1
1

$
1
2

$
1
3

$
1
4

$
1
5

$
1
6

$
1
7

$
1
8

$
1
9

$
1
A

$
1
B

$
1
C

$
1
D

$
1
E

$
1
F

$
2
0

$
2
1

$
2
2

$
2
3

$
2
4

$
2
5

$
2
6

$
2
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

$400 0
1

$480 2
3

$500 4
5

$580 6
7

$600 8
9

$680 10
11

$700 12
13

$780 14
15

$428 16
17

$4A8 18
19

$528 20
21

$5A8 22
23

$628 24
25

$6A8 26
27

$728 28
29

$7A8 30
31

$450 32
33

$4D0 34
35

$550 36
37

$5D0 38
39

$650 40
41

$6D0 42
43

$750 44
45

$7D0 46
47

9

A.1 Why is it so weird? A THE LORES MEMORY MAP

Table 2: The same image from Table 1, but viewed with linear addresses. Note the screen “holes” which
pad every third line to a 128 byte boundary. This unused memory can be used by I/O cards.

$400 0
1

$428 2
3

$450 4
5

$480 6
7

$4A8 8
9

$4D0 10
11

$500 12
13

$528 14
15

$550 16
17

$580 18
19

$5A8 20
21

$5D0 22
23

$600 24
25

$628 26
27

$650 28
29

$680 30
31

$6A8 32
33

$6D0 34
35

$700 36
37

$728 38
39

$750 40
41

$780 42
43

$7A8 44
45

$7D0 46
47

10

	Why would anyone do this?
	The Hardware
	Development Setup
	The Demo
	BOOTLOADER
	DECOMPRESSION
	TITLE SCREEN
	MOCKINGBOARD MUSIC
	MODE7 BACKGROUND
	BALL ON CHECKERBOARD
	TFV SPACESHIP FLYING
	STARFIELD
	RASTERBARS/CREDITS

	Obtaining the Code
	The Lores Memory Map
	Why is it so weird?

