Research

I have many research interests. I’ve been interested in operating systems and hypervisors for a long time, as well as computer architetures.
My professional work now as a researcher at the Johns Hopkins University Applied Physics Lab centers around advanced techniques for computer security. However, most of my current research interest has centered around Machine Learning and how that can be applied in new and interesting fields.

Machine Learning

  • Architecture Classification. I’ve collected a dataset of object from from many different architectures and have shown that machine learning techniques can be used to accurately classify unknown chunks of object code. This work led to a conference paper at DFRWS 2015.

  • Frequent Subgraph Mining for Image Classification The hypothesis of this work is that you can convert natural images of objects into planar graphs, and then you can use frequent subgraph mining to classify objects.

  • Implementations of gSpan I’ve written a few implementations of gSpan, a leading subgraph mining algorithm, including one in Python and one in C. The goals of these implementation is less about performance and more about teaching how gSpan works.

Computer Security

  • Unfortunately, most of my work here proprietary until papers are published. Stay tuned.

OS / Linux Research